We study the global existence and asymptotic behavior of solutions to
the Cauchy problem for the semilinear dissipative wave equations:
$\square u + \partial_t u = |u|^{\alpha+1}$,
$u|_{t=0}=\varepsilon u_0 \in H^1 \cap L^1$, $\partial_t u |_{t=0} = \varepsilon u_1
\in L^2 \cap L^1$ with a small parameter $\varepsilon>0$.
When $N\le 3$ and $2/N<\alpha \le 2/[N-2]^+$, we show the global solvability
and derive the sharp rates of the solutions.