\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations

Abstract Related Papers Cited by
  • We study the global existence and asymptotic behavior of solutions to the Cauchy problem for the semilinear dissipative wave equations: $\square u + \partial_t u = |u|^{\alpha+1}$, $u|_{t=0}=\varepsilon u_0 \in H^1 \cap L^1$, $\partial_t u |_{t=0} = \varepsilon u_1 \in L^2 \cap L^1$ with a small parameter $\varepsilon>0$. When $N\le 3$ and $2/N<\alpha \le 2/[N-2]^+$, we show the global solvability and derive the sharp rates of the solutions.
    Mathematics Subject Classification: 35L15, 35L70, 35L05, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return