July  2003, 9(4): 793-799. doi: 10.3934/dcds.2003.9.793

A hybrid method for the inviscid Burgers equation

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States

Received  March 2002 Revised  December 2002 Published  April 2003

We describe a hybrid method for the numerical solution of the inviscid Burgers equation. The proposed scheme consists of a Fourier Galerkin spectral method for the resolution of the large scales of the solution coupled to a real space method capable of reproducing the small scale features such as shocks. The hybrid scheme captures correctly the decay of the energy of the solution. The underlying idea of the scheme fits in the optimal prediction framework where prior knowledge about an equation is used to improve upon existing algorithms.
Citation: Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793
[1]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[2]

Zimo Zhu, Gang Chen, Xiaoping Xie. Semi-discrete and fully discrete HDG methods for Burgers' equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021132

[3]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[4]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[5]

Valeriano Comincioli, Lucia Della Croce, Giuseppe Toscani. A Boltzmann-like equation for choice formation. Kinetic & Related Models, 2009, 2 (1) : 135-149. doi: 10.3934/krm.2009.2.135

[6]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[7]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[8]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[9]

Zhonghui Li, Xiangyong Chen, Jianlong Qiu, Tongshui Xia. A novel Chebyshev-collocation spectral method for solving the transport equation. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2519-2526. doi: 10.3934/jimo.2020080

[10]

Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213

[11]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

[12]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[13]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[14]

Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic & Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717

[15]

Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You. A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28 (2) : 977-1000. doi: 10.3934/era.2020052

[16]

Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic & Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023

[17]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[18]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008

[19]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

[20]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (112)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]