# American Institute of Mathematical Sciences

July  2003, 9(4): 835-858. doi: 10.3934/dcds.2003.9.835

## The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations

 1 Dipartimento di Matematica "U. Dini", viale Morgagni 67/A, 50134 Firenze, Italy

Received  December 2001 Revised  December 2002 Published  April 2003

The classical Lagrange inversion formula is extended to analytic and non--analytic inversion problems on non--Archimedean fields. We give some applications to the field of formal Laurent series in $n$ variables, where the non--analytic inversion formula gives explicit formal solutions of general semilinear differential and $q$--difference equations.
We will be interested in linearization problems for germs of diffeomorphisms (Siegel center problem) and vector fields. In addition to analytic results, we give sufficient condition for the linearization to belong to some Classes of ultradifferentiable germs, closed under composition and derivation, including Gevrey Classes. We prove that Bruno's condition is sufficient for the linearization to belong to the same Class of the germ, whereas new conditions weaker than Bruno's one are introduced if one allows the linearization to be less regular than the germ. This generalizes to dimension $n> 1$ some results of [6]. Our formulation of the Lagrange inversion formula by mean of trees, allows us to point out the strong similarities existing between the two linearization problems, formulated (essentially) with the same functional equation. For analytic vector fields of $\mathbb C^2$ we prove a quantitative estimate of a previous qualitative result of [25] and we compare it with a result of [26].
Citation: Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835
 [1] Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701 [2] Dongfeng Zhang, Junxiang Xu. On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 635-655. doi: 10.3934/dcds.2006.16.635 [3] Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647 [4] Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601 [5] Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029 [6] Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 [7] Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031 [8] Patrick Bonckaert, P. De Maesschalck. Gevrey and analytic local models for families of vector fields. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 377-400. doi: 10.3934/dcdsb.2008.10.377 [9] Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749 [10] Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 [11] Kari Eloranta. Archimedean ice. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4291-4303. doi: 10.3934/dcds.2013.33.4291 [12] Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure & Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 [13] Marius Mitrea. On Bojarski's index formula for nonsmooth interfaces. Electronic Research Announcements, 1999, 5: 40-46. [14] Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421 [15] Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 [16] Ye Tian, Wei Yang, Gene Lai, Menghan Zhao. Predicting non-life insurer's insolvency using non-kernel fuzzy quadratic surface support vector machines. Journal of Industrial & Management Optimization, 2019, 15 (2) : 985-999. doi: 10.3934/jimo.2018081 [17] Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097 [18] Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539-552. doi: 10.3934/jgm.2019026 [19] Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 [20] Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

2020 Impact Factor: 1.392