-
Previous Article
On blowing-up solutions of the Blasius equation
- DCDS Home
- This Issue
-
Next Article
How little is little enough?
Differentiability of the Hartman--Grobman linearization
1. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802-6401, United States |
2. | Department of Mathematics, Tufts University, Medford, MA 02155-5597, United States |
3. | Department of Mathematics, 360 Portola Plaza, MS Building, University of California, Los Angeles, CA 90095, United States |
[1] |
Adrian Gomez, Dante Carrasco, Heli Elorreaga. A note on differentiability of the conjugacy in a delayed version of Hartman-Grobman Theorem. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022055 |
[2] |
Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187 |
[3] |
Edson A. Coayla-Teran, Salah-Eldin A. Mohammed, Paulo Régis C. Ruffino. Hartman-Grobman theorems along hyperbolic stationary trajectories. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 281-292. doi: 10.3934/dcds.2007.17.281 |
[4] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[5] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[6] |
Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38. |
[7] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[8] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[9] |
Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032 |
[10] |
Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038 |
[11] |
Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3019-3037. doi: 10.3934/dcdsb.2021171 |
[12] |
Habibulla Akhadkulov, Akhtam Dzhalilov, Konstantin Khanin. Notes on a theorem of Katznelson and Ornstein. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4587-4609. doi: 10.3934/dcds.2017197 |
[13] |
Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549 |
[14] |
Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517 |
[15] |
John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 |
[16] |
Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics and Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011 |
[17] |
Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011 |
[18] |
Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165 |
[19] |
Xuefeng Zhao, Yong Li. A Moser theorem for multiscale mappings. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022037 |
[20] |
G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100. |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]