July  2003, 9(4): 979-984. doi: 10.3934/dcds.2003.9.979

Differentiability of the Hartman--Grobman linearization

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802-6401, United States

2. 

Department of Mathematics, Tufts University, Medford, MA 02155-5597, United States

3. 

Department of Mathematics, 360 Portola Plaza, MS Building, University of California, Los Angeles, CA 90095, United States

Received  July 2002 Revised  November 2002 Published  April 2003

We show that the linearizing homeomorphism in the Hartman--Grobman Theorem is differentiable at the fixed point.
Citation: Misha Guysinsky, Boris Hasselblatt, Victoria Rayskin. Differentiability of the Hartman--Grobman linearization. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 979-984. doi: 10.3934/dcds.2003.9.979
[1]

Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187

[2]

Edson A. Coayla-Teran, Salah-Eldin A. Mohammed, Paulo Régis C. Ruffino. Hartman-Grobman theorems along hyperbolic stationary trajectories. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 281-292. doi: 10.3934/dcds.2007.17.281

[3]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[4]

Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38.

[5]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[6]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[7]

Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038

[8]

Habibulla Akhadkulov, Akhtam Dzhalilov, Konstantin Khanin. Notes on a theorem of Katznelson and Ornstein. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4587-4609. doi: 10.3934/dcds.2017197

[9]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[10]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[11]

G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100.

[12]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[13]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[14]

Marek Rychlik. The Equichordal Point Problem. Electronic Research Announcements, 1996, 2: 108-123.

[15]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

[16]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[17]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[18]

Viktor L. Ginzburg and Basak Z. Gurel. The Generalized Weinstein--Moser Theorem. Electronic Research Announcements, 2007, 14: 20-29. doi: 10.3934/era.2007.14.20

[19]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[20]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (260)
  • HTML views (0)
  • Cited by (20)

[Back to Top]