July  2003, 9(4): 979-984. doi: 10.3934/dcds.2003.9.979

Differentiability of the Hartman--Grobman linearization

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802-6401, United States

2. 

Department of Mathematics, Tufts University, Medford, MA 02155-5597, United States

3. 

Department of Mathematics, 360 Portola Plaza, MS Building, University of California, Los Angeles, CA 90095, United States

Received  July 2002 Revised  November 2002 Published  April 2003

We show that the linearizing homeomorphism in the Hartman--Grobman Theorem is differentiable at the fixed point.
Citation: Misha Guysinsky, Boris Hasselblatt, Victoria Rayskin. Differentiability of the Hartman--Grobman linearization. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 979-984. doi: 10.3934/dcds.2003.9.979
[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (461)
  • HTML views (0)
  • Cited by (20)

[Back to Top]