
Previous Article
Recent results in contact form geometry
 DCDS Home
 This Issue

Next Article
Mark Vishik and his work
Preservation of spatial patterns by a hyperbolic equation
1.  Department of Mathematics, University of California, Irvine, Irvine, CA 926973875, United States 
[1] 
Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 32273250. doi: 10.3934/dcds.2016.36.3227 
[2] 
George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems  A, 1997, 3 (2) : 189205. doi: 10.3934/dcds.1997.3.189 
[3] 
Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks & Heterogeneous Media, 2016, 11 (4) : 627653. doi: 10.3934/nhm.2016012 
[4] 
Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reactiondiffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems  A, 2006, 14 (1) : 93116. doi: 10.3934/dcds.2006.14.93 
[5] 
Jonathan P. Desi, Evelyn Sander, Thomas Wanner. Complex transient patterns on the disk. Discrete & Continuous Dynamical Systems  A, 2006, 15 (4) : 10491078. doi: 10.3934/dcds.2006.15.1049 
[6] 
Navin Keswani. Homotopy invariance of relative etainvariants and $C^*$algebra $K$theory. Electronic Research Announcements, 1998, 4: 1826. 
[7] 
Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909922. doi: 10.3934/krm.2019034 
[8] 
Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems  B, 2007, 8 (4) : 833859. doi: 10.3934/dcdsb.2007.8.833 
[9] 
Alexandru Kristály, IldikóIlona Mezei. Multiple solutions for a perturbed system on striplike domains. Discrete & Continuous Dynamical Systems  S, 2012, 5 (4) : 789796. doi: 10.3934/dcdss.2012.5.789 
[10] 
Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure & Applied Analysis, 2009, 8 (4) : 12691289. doi: 10.3934/cpaa.2009.8.1269 
[11] 
Mónica Clapp, Jorge Faya. Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains. Discrete & Continuous Dynamical Systems  A, 2019, 39 (6) : 32653289. doi: 10.3934/dcds.2019135 
[12] 
Walter D. Neumann and Jun Yang. Invariants from triangulations of hyperbolic 3manifolds. Electronic Research Announcements, 1995, 1: 7279. 
[13] 
E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete & Continuous Dynamical Systems  B, 2003, 3 (4) : 519540. doi: 10.3934/dcdsb.2003.3.519 
[14] 
Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 183189. doi: 10.3934/dcdss.2012.5.183 
[15] 
Arnaud Ducrot, Vincent Guyonne, Michel Langlais. Some remarks on the qualitative properties of solutions to a predatorprey model posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems  S, 2011, 4 (1) : 6782. doi: 10.3934/dcdss.2011.4.67 
[16] 
Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91102. doi: 10.3934/cpaa.2016.15.91 
[17] 
Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems  S, 2019, 12 (7) : 19772003. doi: 10.3934/dcdss.2019128 
[18] 
Feng Zhou, Chunyou Sun. Dynamics for the complex GinzburgLandau equation on noncylindrical domains I: The diffeomorphism case. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 37673792. doi: 10.3934/dcdsb.2016120 
[19] 
Andrey Shishkov. Large solutions of parabolic logistic equation with spatial and temporal degeneracies. Discrete & Continuous Dynamical Systems  S, 2017, 10 (4) : 895907. doi: 10.3934/dcdss.2017045 
[20] 
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333351. doi: 10.3934/ipi.2009.3.333 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]