
Previous Article
Transport in rotating fluids
 DCDS Home
 This Issue

Next Article
On the fractal dimension of invariant sets: Applications to NavierStokes equations
Asymptotic analysis of a twodimensional coupled problem for compressible viscous flows
1.  Robert Bosch GMBH, FV/PTS, Postfach 30 02 40, D70442 Stuttgart, Germany 
2.  IRS, Universtät Stuttgart, D70550 Stuttgart, Germany 
3.  Mathematics Department, Central European University, H1051 Budapest, Hungary 
4.  Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, 70550 Stuttgart, Germany 
[1] 
O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multiD viscous shocks. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 131160. doi: 10.3934/dcds.2004.11.131 
[2] 
ChiuYa Lan, ChiKun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161188. doi: 10.3934/dcds.2004.11.161 
[3] 
John M. Hong, ChengHsiung Hsu, BoChih Huang, TziSheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 15011526. doi: 10.3934/cpaa.2013.12.1501 
[4] 
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 128. doi: 10.3934/dcds.2020345 
[5] 
Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems  B, 2016, 21 (5) : 16171633. doi: 10.3934/dcdsb.2016014 
[6] 
Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems  S, 2022, 15 (8) : 22152232. doi: 10.3934/dcdss.2022091 
[7] 
Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 37413774. doi: 10.3934/dcds.2016.36.3741 
[8] 
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible NavierStokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409425. doi: 10.3934/krm.2010.3.409 
[9] 
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 36153627. doi: 10.3934/dcds.2021009 
[10] 
Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure and Applied Analysis, 2019, 18 (2) : 751794. doi: 10.3934/cpaa.2019037 
[11] 
Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous CahnHilliard equations with memory and dynamic boundary conditions. Discrete and Continuous Dynamical Systems  B, 2013, 18 (6) : 15811610. doi: 10.3934/dcdsb.2013.18.1581 
[12] 
Lili Fan, Lizhi Ruan, Wei Xiang. Asymptotic stability of viscous contact wave for the inflow problem of the onedimensional radiative Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 19711999. doi: 10.3934/dcds.2020349 
[13] 
ZhiYing Sun, Lan Huang, XinGuang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861878. doi: 10.3934/era.2020045 
[14] 
Lan Huang, Zhiying Sun, XinGuang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 15951620. doi: 10.3934/cpaa.2022033 
[15] 
Dongfen Bian. Initial boundary value problem for twodimensional viscous Boussinesq equations for MHD convection. Discrete and Continuous Dynamical Systems  S, 2016, 9 (6) : 15911611. doi: 10.3934/dcdss.2016065 
[16] 
Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic and Related Models, 2018, 11 (4) : 795819. doi: 10.3934/krm.2018032 
[17] 
Laurence Cherfils, Madalina Petcu. On the viscous CahnHilliardNavierStokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 14191449. doi: 10.3934/cpaa.2016.15.1419 
[18] 
Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete and Continuous Dynamical Systems  B, 2011, 15 (4) : 10451064. doi: 10.3934/dcdsb.2011.15.1045 
[19] 
Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, JeanPierre Raymond. Boundary stabilizability of the linearized viscous SaintVenant system. Discrete and Continuous Dynamical Systems  B, 2011, 15 (3) : 491511. doi: 10.3934/dcdsb.2011.15.491 
[20] 
Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems  B, 2010, 13 (3) : 593608. doi: 10.3934/dcdsb.2010.13.593 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]