-
Previous Article
Complex Neumann type boundary problem and decomposition of Lebesgue spaces
- DCDS Home
- This Issue
-
Next Article
Transition semigroups corresponding to Lipschitz dissipative systems
Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle
1. | Dpto. Matemática Aplicada, Univ. Complutense, 28040 Madrid, Spain |
2. | CEREMATH – UMR MIP, Université Toulouse 1, Place A.France, F–31042 Toulouse Cedex, France |
$\mathcal Q_a(f,u^0)\qquad$ $\partial_tu-\Delta u=au+f(t,x),$ in $Q=]0,\infty [ \times \Omega, $
$u(t,x)=0\qquad$ $(t,x)\in ]0,\infty [ \times \partial \Omega,$
$u(0,x)=u^0(x), \qquad x\in \Omega,$
where $\Omega$ is a smooth bounded domain in $\mathbb R^N$ and $a\in\mathbb R$. We obtain some sufficient conditions for having a finite time $t_p>0$ (depending on $a$ and on the data $u^0$ and $f$ which are not necessarily of the same sign) such that $ u(t,x)>0 \forall t>t_p, a. e. x\in\Omega$.
[1] |
Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024 |
[2] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[3] |
Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221 |
[4] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[5] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[6] |
H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 |
[7] |
Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002 |
[8] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[9] |
E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209 |
[10] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[11] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[12] |
Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure & Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003 |
[13] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[14] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
[15] |
Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 |
[16] |
Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291 |
[17] |
Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067 |
[18] |
Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 |
[19] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
[20] |
Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]