February  2004, 10(1&2): 201-210. doi: 10.3934/dcds.2004.10.201

Complex Neumann type boundary problem and decomposition of Lebesgue spaces

1. 

Moscow Power Engineering Institute, Moscow, Russian Federation

Received  May 2003 Revised  September 2003 Published  October 2003

In this article, we study the generalization of the the decomposition $W_p^m(G)=\mathcal O_p^m(G)\oplus\partial W_{p,0}^{m+1}(G), p>1,m=0,\pm 1,\cdots$ to the case of several complex variables. More precisely, we consider the Lebesgue space $L_2(G)$ and prove that the above decomposition is closely related to the solvability of a complex Neumann problem whose solvability is equivalent to the complex version of Poincaré's inequality.
Citation: Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201
[1]

Chuanqiang Chen, Li Chen, Xinqun Mei, Ni Xiang. The Neumann problem for a class of mixed complex Hessian equations. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4203-4218. doi: 10.3934/dcds.2022049

[2]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[3]

Markus Banagl. Singular spaces and generalized Poincaré complexes. Electronic Research Announcements, 2009, 16: 63-73. doi: 10.3934/era.2009.16.63

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Ferdinand Verhulst. Henri Poincaré's neglected ideas. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1411-1427. doi: 10.3934/dcdss.2020079

[6]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[7]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[8]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[9]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[10]

Jie Jiang. Global stability of Keller–Segel systems in critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 609-634. doi: 10.3934/dcds.2020025

[11]

Carlo Bardaro, Ilaria Mantellini. Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces. Mathematical Foundations of Computing, 2022, 5 (3) : 219-229. doi: 10.3934/mfc.2021031

[12]

Paulo Mendes de Carvalho Neto, Renato Fehlberg Júnior. The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces I. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022118

[13]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[14]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[15]

Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103

[16]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[17]

Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537

[18]

Shengliang Pan, Deyan Zhang, Zhongjun Chao. A generalization of the Blaschke-Lebesgue problem to a kind of convex domains. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1587-1601. doi: 10.3934/dcdsb.2016012

[19]

Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure and Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295

[20]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]