
Previous Article
Stabilization for the 3D NavierStokes system by feedback boundary control
 DCDS Home
 This Issue

Next Article
Recurrence in the 2$D$ NavierStokes equations
Remarks concerning modified NavierStokes equations
1.  Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 606077045, United States 
2.  Department of Mathematics, Princeton University, Princeton, NJ 085441000, United States 
[1] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[2] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[3] 
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped NavierStokes equations. Conference Publications, 2015, 2015 (special) : 349358. doi: 10.3934/proc.2015.0349 
[4] 
Hyukjin Kwean. Kwak transformation and NavierStokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433446. doi: 10.3934/cpaa.2004.3.433 
[5] 
Vittorino Pata. On the regularity of solutions to the NavierStokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747761. doi: 10.3934/cpaa.2012.11.747 
[6] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[7] 
Igor Kukavica. On regularity for the NavierStokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 13191328. doi: 10.3934/dcds.2010.26.1319 
[8] 
Igor Kukavica. On partial regularity for the NavierStokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717728. doi: 10.3934/dcds.2008.21.717 
[9] 
Shuguang Shao, Shu Wang, WenQing Xu. Global regularity for a model of NavierStokes equations with logarithmic subdissipation. Kinetic and Related Models, 2018, 11 (1) : 179190. doi: 10.3934/krm.2018009 
[10] 
JeanPierre Raymond. Stokes and NavierStokes equations with a nonhomogeneous divergence condition. Discrete and Continuous Dynamical Systems  B, 2010, 14 (4) : 15371564. doi: 10.3934/dcdsb.2010.14.1537 
[11] 
Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the NavierStokes equations. Discrete and Continuous Dynamical Systems  S, 2013, 6 (5) : 12771289. doi: 10.3934/dcdss.2013.6.1277 
[12] 
Siegfried Maier, Jürgen Saal. Stokes and NavierStokes equations with perfect slip on wedge type domains. Discrete and Continuous Dynamical Systems  S, 2014, 7 (5) : 10451063. doi: 10.3934/dcdss.2014.7.1045 
[13] 
Ana Bela Cruzeiro. NavierStokes and stochastic NavierStokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553560. doi: 10.3934/jgm.2019027 
[14] 
Yann Brenier. Approximation of a simple NavierStokes model by monotonic rearrangement. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 12851300. doi: 10.3934/dcds.2014.34.1285 
[15] 
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized NavierStokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545556. doi: 10.3934/krm.2013.6.545 
[16] 
Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and NavierStokes equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 27152719. doi: 10.3934/cpaa.2013.12.2715 
[17] 
XueLi Song, YanRen Hou. Attractors for the threedimensional incompressible NavierStokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239252. doi: 10.3934/dcds.2011.31.239 
[18] 
Daoyuan Fang, Ting Zhang. Compressible NavierStokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675694. doi: 10.3934/cpaa.2004.3.675 
[19] 
Chongsheng Cao. Sufficient conditions for the regularity to the 3D NavierStokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 11411151. doi: 10.3934/dcds.2010.26.1141 
[20] 
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed NavierStokes equations. Communications on Pure and Applied Analysis, 2020, 19 (12) : 53375365. doi: 10.3934/cpaa.2020241 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]