February  2004, 10(1&2): 473-496. doi: 10.3934/dcds.2004.10.473

Attractors for noncompact nonautonomous systems via energy equations

1. 

Department of Mathematics, University of Texas at Austin, Austin, TX 78712, United States

2. 

Department of Applied Mathematics, Federal University of Rio de Janeiro, Caixa Postal 68530, Rio de Janeiro, RJ 21945–970

3. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

Received  September 2002 Revised  March 2003 Published  October 2003

An extension to the nonautonomous case of the energy equation method for proving the existence of attractors for noncompact systems is presented. A suitable generalization of the asymptotic compactness property to the nonautonomous case, termed uniform asymptotic compactness, is given, and conditions on the energy equation associated with an abstract class of equations that assure the uniform asymptotic compactness are obtained. This general formulation is then applied to a nonautonomous Navier-Stokes system on an infinite channel past an obstacle, with time-dependent forcing and boundary conditions, and to a nonautonomous, weakly damped, forced Korteweg-de Vries equation on the real line.
Citation: Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473
[1]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[2]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[3]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[4]

Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021039

[5]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[6]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations and Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[7]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[8]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[9]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[10]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[11]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[12]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[13]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure and Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[14]

Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021052

[15]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[16]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[17]

P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423

[18]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[19]

Xiangming Zhu, Chengkui Zhong. Uniform attractors for nonautonomous reaction-diffusion equations with the nonlinearity in a larger symbol space. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021212

[20]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (30)

Other articles
by authors

[Back to Top]