July  2004, 10(3): 617-634. doi: 10.3934/dcds.2004.10.617

Solutions of some nonlinear elliptic problems with perturbation terms of arbitrary growth

1. 

Department of Mathematics, Shandong University, Jinan 250100, China

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100037, China

Received  October 2002 Revised  May 2003 Published  January 2004

In this paper, existence and multiplicity of nontrivial solutions are obtained for some nonlinear elliptic boundary value problems with perturbation terms of arbitrary growth. Results are obtained via variational arguments.
Citation: Zhaoli Liu, Jiabao Su. Solutions of some nonlinear elliptic problems with perturbation terms of arbitrary growth. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 617-634. doi: 10.3934/dcds.2004.10.617
[1]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[2]

Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657

[3]

Jinlong Bai, Desheng Li, Chunqiu Li. A note on multiplicity of solutions near resonance of semilinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3351-3365. doi: 10.3934/cpaa.2019151

[4]

J. Chen, K. Murillo, E. M. Rocha. Two nontrivial solutions of a class of elliptic equations with singular term. Conference Publications, 2011, 2011 (Special) : 272-281. doi: 10.3934/proc.2011.2011.272

[5]

Xiyou Cheng, Zhaosheng Feng, Lei Wei. Existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with weight functions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3067-3083. doi: 10.3934/dcdss.2021078

[6]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[7]

Marcos L. M. Carvalho, José Valdo A. Goncalves, Claudiney Goulart, Olímpio H. Miyagaki. Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 83-106. doi: 10.3934/cpaa.2019006

[8]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[9]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure & Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[10]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[11]

Claudianor Oliveira Alves, Paulo Cesar Carrião, Olímpio Hiroshi Miyagaki. Signed solution for a class of quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (4) : 531-545. doi: 10.3934/cpaa.2002.1.531

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469

[13]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[14]

Claudianor O. Alves, J. V. Gonçalves, Olimpio Hiroshi Miyagaki. Remarks on multiplicity of positive solutions of nonlinear elliptic equations in $IR^N$ with critical growth. Conference Publications, 1998, 1998 (Special) : 51-57. doi: 10.3934/proc.1998.1998.51

[15]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058

[16]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[17]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

[18]

Ziqing Yuana, Jianshe Yu. Existence and multiplicity of nontrivial solutions of biharmonic equations via differential inclusion. Communications on Pure & Applied Analysis, 2020, 19 (1) : 391-405. doi: 10.3934/cpaa.2020020

[19]

Yanjun Liu, Chungen Liu. Ground state solution and multiple solutions to elliptic equations with exponential growth and singular term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2819-2838. doi: 10.3934/cpaa.2020123

[20]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3331-3355. doi: 10.3934/cpaa.2021108

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]