October  2004, 10(4): 837-855. doi: 10.3934/dcds.2004.10.837

The Evans function and stability criteria for degenerate viscous shock waves

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77845, United States

2. 

Mathematics Department, Indiana University, Bloomington, IN 47405, United States

Received  June 2002 Revised  December 2003 Published  March 2004

It is well known that the stability of certain distinguished waves arising in evolutionary PDE can be determined by the spectrum of the linear operator found by linearizing the PDE about the wave. Indeed, work over the last fifteen years has shown that spectral stability implies nonlinear stability in a broad range of cases, including asymptotically constant traveling waves in both reaction--diffusion equations and viscous conservation laws. A critical step toward analyzing the spectrum of such operators was taken in the late eighties by Alexander, Gardner, and Jones, whose Evans function (generalizing earlier work of John W. Evans) serves as a characteristic function for the above-mentioned operators. Thus far, results obtained through working with the Evans function have made critical use of the function's analyticity at the origin (or its analyticity over an appropriate Riemann surface). In the case of degenerate (or sonic) viscous shock waves, however, the Evans function is certainly not analytic in a neighborhood of the origin, and does not appear to admit analytic extension to a Riemann manifold. We surmount this obstacle by dividing the Evans function (plus related objects) into two pieces: one analytic in a neighborhood of the origin, and one sufficiently small.
Citation: Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]