
Previous Article
Eigenvalues and resonances using the Evans function
 DCDS Home
 This Issue

Next Article
Traveling waves and shock waves
The Evans function and stability criteria for degenerate viscous shock waves
1.  Department of Mathematics, Texas A&M University, College Station, TX 77845, United States 
2.  Mathematics Department, Indiana University, Bloomington, IN 47405, United States 
[1] 
Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of smallamplitude shock profiles. Discrete & Continuous Dynamical Systems  A, 2004, 10 (4) : 885924. doi: 10.3934/dcds.2004.10.885 
[2] 
Georges Bastin, B. Haut, JeanMichel Coron, Brigitte d'AndréaNovel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751759. doi: 10.3934/nhm.2007.2.751 
[3] 
Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems  A, 2004, 10 (4) : 857869. doi: 10.3934/dcds.2004.10.857 
[4] 
Yuri Latushkin, Alim Sukhtayev. The Evans function and the WeylTitchmarsh function. Discrete & Continuous Dynamical Systems  S, 2012, 5 (5) : 939970. doi: 10.3934/dcdss.2012.5.939 
[5] 
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245258. doi: 10.3934/nhm.2017010 
[6] 
Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems  A, 2012, 32 (9) : 30813097. doi: 10.3934/dcds.2012.32.3081 
[7] 
Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565581. doi: 10.3934/nhm.2010.5.565 
[8] 
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159179. doi: 10.3934/nhm.2007.2.159 
[9] 
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187203. doi: 10.3934/jgm.2019010 
[10] 
Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for twodimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469476. doi: 10.3934/proc.2003.2003.469 
[11] 
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931942. doi: 10.3934/cpaa.2019045 
[12] 
Björn Sandstede, Arnd Scheel. Evans function and blowup methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems  A, 2004, 10 (4) : 941964. doi: 10.3934/dcds.2004.10.941 
[13] 
WenXiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 707721. doi: 10.3934/dcdss.2018044 
[14] 
TaiPing Liu, ShihHsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems  A, 2000, 6 (1) : 143145. doi: 10.3934/dcds.2000.6.143 
[15] 
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755769. doi: 10.3934/cpaa.2013.12.755 
[16] 
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems  S, 2016, 9 (1) : 7388. doi: 10.3934/dcdss.2016.9.73 
[17] 
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393407. doi: 10.3934/nhm.2009.4.393 
[18] 
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems  A, 2000, 6 (3) : 673682. doi: 10.3934/dcds.2000.6.673 
[19] 
Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : iii. doi: 10.3934/nhm.2016.11.2i 
[20] 
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644654. doi: 10.3934/proc.2007.2007.644 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]