January  2004, 11(1): 161-188. doi: 10.3934/dcds.2004.11.161

Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach

1. 

Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

2. 

Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan

Received  February 2003 Revised  January 2004 Published  April 2004

In this article we apply the renormalization group method to study the potential flows of a compressible viscous fluid at small Reynolds number. The derived renormalization equation of order one is a system of reaction convection diffusion equations. The global existence and uniqueness of the weak solutions satisfying the energy inequality are proved following the methodology of Leray. The comparison between the exact solution and its approximation is also discussed.
Citation: Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161
[1]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[2]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[3]

Ning Sun, Shaoyun Shi, Wenlei Li. Singular renormalization group approach to SIS problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3577-3596. doi: 10.3934/dcdsb.2020073

[4]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[5]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[6]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[7]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[8]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[9]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[10]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[11]

Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175

[12]

Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787

[13]

Yanheng Ding, Fukun Zhao. On a diffusion system with bounded potential. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1073-1086. doi: 10.3934/dcds.2009.23.1073

[14]

Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks and Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313

[15]

Mohamed Baouch, Juan Antonio López-Ramos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715-717. doi: 10.3934/amc.2017052

[16]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[17]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[18]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[19]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[20]

Xueying Wang, Drew Posny, Jin Wang. A reaction-convection-diffusion model for cholera spatial dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2785-2809. doi: 10.3934/dcdsb.2016073

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]