-
Previous Article
Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems
- DCDS Home
- This Issue
-
Next Article
Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach
Asymptotic structure for solutions of the Navier--Stokes equations
1. | Department of Mathematics, Sichuan University, Chengdu |
2. | Department of Mathematics, Indiana University, Bloomington, IN 47405 |
[1] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
[2] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[3] |
Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153 |
[4] |
Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052 |
[5] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[6] |
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991 |
[7] |
Yinnian He, Pengzhan Huang, Jian Li. H2-stability of some second order fully discrete schemes for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2745-2780. doi: 10.3934/dcdsb.2018273 |
[8] |
Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483 |
[9] |
Tongtong Liang. The stability with the general decay rate of the solution for stochastic functional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022127 |
[10] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[11] |
Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010 |
[12] |
Hitoshi Ishii, Taiga Kumagai. Averaging of Hamilton-Jacobi equations along divergence-free vector fields. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1519-1542. doi: 10.3934/dcds.2020329 |
[13] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
[14] |
Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985 |
[15] |
Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279 |
[16] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[17] |
M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure and Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 |
[18] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[19] |
Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065 |
[20] |
Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]