2004, 11(1): 205-220. doi: 10.3934/dcds.2004.11.205

Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems

1. 

MAB, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex

2. 

Mathematics Department, Indiana University, Bloomington, IN 47405

Received  December 2002 Revised  November 2003 Published  April 2004

In this paper we prove the continuity of stable subspaces associated to parabolic-hyperbolic boundary value problems, for limiting values of parameters. The analysis is based on the construction performed in [MZ] of Kreiss' type symmetrizers.
Citation: G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205
[1]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[2]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[3]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[4]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[5]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[6]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[7]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[8]

J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

[9]

K. Q. Lan. Multiple positive eigenvalues of conjugate boundary value problems with singularities. Conference Publications, 2003, 2003 (Special) : 501-506. doi: 10.3934/proc.2003.2003.501

[10]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[11]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[12]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[13]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[14]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[15]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

[16]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[17]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[18]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[19]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[20]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]