-
Previous Article
Some notes on periodic systems with linear part at resonance
- DCDS Home
- This Issue
-
Next Article
Controllability properties of a vibrating string with variable axial load
Coupled map lattices without cluster expansion
1. | Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstr. 1½, 91054 Erlangen, Germany |
2. | Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy |
[1] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[2] |
Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697 |
[3] |
Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems and Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211 |
[4] |
Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81 |
[5] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[6] |
Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017 |
[7] |
Buddhi Pantha, Judy Day, Suzanne Lenhart. Investigating the effects of intervention strategies in a spatio-temporal anthrax model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1607-1622. doi: 10.3934/dcdsb.2019242 |
[8] |
Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125 |
[9] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[10] |
Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055 |
[11] |
Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004 |
[12] |
Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513 |
[13] |
Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699 |
[14] |
Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082 |
[15] |
Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 |
[16] |
Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273 |
[17] |
Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960 |
[18] |
Rodrigo A. Garrido, Ivan Aguirre. Emergency logistics for disaster management under spatio-temporal demand correlation: The earthquakes case. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2369-2387. doi: 10.3934/jimo.2019058 |
[19] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[20] |
Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]