• Previous Article
    Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions
  • DCDS Home
  • This Issue
  • Next Article
    Well-posedness, blowup, and global existence for an integrable shallow water equation
March  2004, 11(2&3): 413-448. doi: 10.3934/dcds.2004.11.413

On the double pendulum: An example of double resonant situations


Departamento de Matemáticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain


Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

Received  July 2002 Revised  January 2004 Published  June 2004

As a model of double resonant situations, we study fast periodic perturbations of a double pendulum. The associated dynamical system presents periodic orbits whose invariant manifolds split under the perturbation. The main purpose of this paper is to analytically show that this splitting is given, in first order, by the Melnikov function and give a lower bound for such splitting in terms of the perturbative parameter. Many results used in "simple pendulum cases" have to be adapted in order to give a description of the intricate dynamics exhibited by these periodic perturbations.
Citation: Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139


Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995


Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35


Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete & Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021319


Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233


José Laudelino de Menezes Neto, Gerson Cruz Araujo, Yocelyn Pérez Rothen, Claudio Vidal. Parametric stability of a double pendulum with variable length and with its center of mass in an elliptic orbit. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2021031


José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1


George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203


Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133


Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967


Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579


Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397


Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197


Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1


Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053


Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021040


Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.


Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276


I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in real-analytic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 295-322. doi: 10.3934/dcdsb.2008.10.295


Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

2020 Impact Factor: 1.392


  • PDF downloads (79)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]