-
Previous Article
Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems
- DCDS Home
- This Issue
-
Next Article
Singularity formation in the generalized Benjamin-Ono equation
Rotating fluids in a cylinder
1. | LMC - IMAG, UMR 5523 (CNRS-UJF-INPG), B.P. 53, 38041 Grenoble Cedex 9, France |
2. | CEA/DIF, B.P. 12, 91680 Bruyères le Châtel, France |
3. | UMPA (CNRS UMR 128), E.N.S. Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France |
In a second section, we discuss the compressible Navier--Stokes equations with anisotropic viscosity tensor in the combined low Mach and low Rossby number limit. In the case of well prepared initial data, we prove that global weak solutions with Dirichlet boundary conditions converge to the solution of a two--dimensional quasi-geostrophic model taking into account the compressibility. In the case of ill prepared data, we only show that we can hope a strong convergence result under the same kind of assumptions as in the incompressible case.
[1] |
D. Wirosoetisno. Navier--Stokes equations on a rapidly rotating sphere. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1251-1259. doi: 10.3934/dcdsb.2015.20.1251 |
[2] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336 |
[3] |
Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069 |
[4] |
Eduard Feireisl, Hana Petzeltová. Low Mach number asymptotics for reacting compressible fluid flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 455-480. doi: 10.3934/dcds.2010.26.455 |
[5] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[6] |
Young-Sam Kwon, Antonin Novotny. Derivation of geostrophic equations as a rigorous limit of compressible rotating and heat conducting fluids with the general initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 395-421. doi: 10.3934/dcds.2020015 |
[7] |
Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387 |
[8] |
Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030 |
[9] |
Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068 |
[10] |
Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145 |
[11] |
T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171 |
[12] |
May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179 |
[13] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[14] |
Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023 |
[15] |
Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084 |
[16] |
Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001 |
[17] |
Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085 |
[18] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[19] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025 |
[20] |
Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic and Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]