
Previous Article
Topological entropy of a magnetic flow and the growth of the number of trajectories
 DCDS Home
 This Issue

Next Article
The construction of chaotic maps in the sense of Devaney on dendrites which commute to continuous maps on the unit interval
Dynamics of oscillations in a multidimensional delay differential system
1.  School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv 
$\dot x_i(t)=F_i(x_1(t),\ldots,x_n(t),t)$ sign $x_i(th_i),\quad i=1,\ldots,n,$
with positive constant delays $h_1,...,h_n$ and perturbations $F_1,...,F_n$ absolutely bounded by a constant less than 1. This is a model of a negative feedback controller of relay type intended to bring the system to the origin. Nonzero delays do not allow such a stabilization, but cause oscillations around zero level in any variable. We introduce integralvalued relative frequencies of zeroes of the solution components, and show that they always decrease to some limit values. Moreover, for any prescribed limit relative frequencies, there exists at least an $n$parametric family of solutions realizing these oscillation frequencies. We also find sufficient conditions for the stability of slow oscillations, and show that in this case there exist absolute frequencies of oscillations.
[1] 
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124137. doi: 10.3934/proc.1998.1998.124 
[2] 
Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809816. doi: 10.3934/proc.2003.2003.809 
[3] 
Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent PujoMenjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete and Continuous Dynamical Systems  B, 2019, 24 (6) : 24172442. doi: 10.3934/dcdsb.2018259 
[4] 
José Ángel Cid, Luís Sanchez. Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach. Discrete and Continuous Dynamical Systems  B, 2020, 25 (2) : 545554. doi: 10.3934/dcdsb.2019253 
[5] 
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with timevarying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 61236138. doi: 10.3934/dcds.2017263 
[6] 
SzeBi Hsu, MingChia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the NicholsonBailey model and delay of stability loss. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 14651492. doi: 10.3934/dcds.2003.9.1465 
[7] 
Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a secondorder discontinuous system with delay. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 339358. doi: 10.3934/dcds.2003.9.339 
[8] 
Guy Katriel. Stability of synchronized oscillations in networks of phaseoscillators. Discrete and Continuous Dynamical Systems  B, 2005, 5 (2) : 353364. doi: 10.3934/dcdsb.2005.5.353 
[9] 
Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some secondorder differential equations without LandesmanLazer conditions. Conference Publications, 2001, 2001 (Special) : 174181. doi: 10.3934/proc.2001.2001.174 
[10] 
Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete and Continuous Dynamical Systems  S, 2020, 13 (4) : 11451185. doi: 10.3934/dcdss.2020068 
[11] 
Chunhua Shan. Slowfast dynamics and nonlinear oscillations in transmission of mosquitoborne diseases. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 14471469. doi: 10.3934/dcdsb.2021097 
[12] 
Muhammad Usman, BingYu Zhang. Forced oscillations of the Kortewegde Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 15091523. doi: 10.3934/dcds.2010.26.1509 
[13] 
Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 13611375. doi: 10.3934/cpaa.2011.10.1361 
[14] 
Jan Čermák, Jana Hrabalová. Delaydependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 45774588. doi: 10.3934/dcds.2014.34.4577 
[15] 
ShyanShiou Chen, ChangYuan Cheng. Delayinduced mixedmode oscillations in a 2D HindmarshRosetype model. Discrete and Continuous Dynamical Systems  B, 2016, 21 (1) : 3753. doi: 10.3934/dcdsb.2016.21.37 
[16] 
Jonathan E. Rubin, Justyna SignerskaRynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixedmode oscillations. Discrete and Continuous Dynamical Systems  B, 2017, 22 (10) : 40034039. doi: 10.3934/dcdsb.2017205 
[17] 
Jifeng Chu, Zaitao Liang, Pedro J. Torres, Zhe Zhou. Existence and stability of periodic oscillations of a rigid dumbbell satellite around its center of mass. Discrete and Continuous Dynamical Systems  B, 2017, 22 (7) : 26692685. doi: 10.3934/dcdsb.2017130 
[18] 
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295313. doi: 10.3934/dcds.2007.18.295 
[19] 
Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems  B, 2015, 20 (7) : 18551876. doi: 10.3934/dcdsb.2015.20.1855 
[20] 
Eugen Stumpf. Local stability analysis of differential equations with statedependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 34453461. doi: 10.3934/dcds.2016.36.3445 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]