October  2004, 11(4): 855-866. doi: 10.3934/dcds.2004.11.855

Localization of energy in FPU chains


Università di Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy


Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy


Dipartimento di Matematica e Applicazioni, Via R. Cozzi 53, 20126 Milano, Italy

Received  February 2003 Revised  March 2004 Published  September 2004

We revisit the celebrated model of Fermi, Pasta and Ulam with the aim of investigating, by numerical computations, the trend towards equipartition in the thermodynamic limit. We concentrate our attention on a particular class of initial conditions, namely, with all the energy on the first mode or the first few modes. We observe that the approach to equipartition occurs on two different time scales: in a short time the energy spreads up by forming a packet involving all low--frequency modes up to a cutoff frequency $\omega_c$, while a much longer time is required in order to reach equipartition, if any. In this sense one has an energy localization with respect to frequency. The crucial point is that our numerical computations suggest that this phenomenon of a fast formation of a natural packet survives in the thermodynamic limit. More precisely we conjecture that the cutoff frequency $\omega_c$ is a function of the specific energy $\epsilon = E/N$, where $E$ and $N$ are the total energy and the number of particles, respectively. Equivalently, there should exist a function $\epsilon_c(\omega)$, representing the minimal specific energy at which the natural packet extends up to frequency $\omega$. The time required for the fast formation of the natural packet is also investigated.
Citation: Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i


Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113


Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482


P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1


Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020


Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181


Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785


Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116


Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017


Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867


Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719


Qi Gong, I. Michael Ross, Wei Kang. A pseudospectral observer for nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 589-611. doi: 10.3934/dcdsb.2007.8.589


Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088


Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861


Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415


Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493


Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425


Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313


Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301


Fadia Bekkal-Brikci, Khalid Boushaba, Ovide Arino. Nonlinear age structured model with cannibalism. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 201-218. doi: 10.3934/dcdsb.2007.7.201

2020 Impact Factor: 1.392


  • PDF downloads (127)
  • HTML views (0)
  • Cited by (47)

[Back to Top]