October  2005, 12(5): 1019-1029. doi: 10.3934/dcds.2005.12.1019

Robust exponential attractors for a family of nonconserved phase-field systems with memory

1. 

Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, I-44100 Ferrara

2. 

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, I-20133 Milano

3. 

Dipartimento di Matematica "F.Brioschi", Politecnico di Milano, Via Bonardi 9, I-20133 Milano, Italy

Received  March 2004 Revised  November 2004 Published  February 2005

We consider a family of phase-field systems with memory effects in the temperature $\vartheta$, depending on a parameter $\omega\geq 0$. Setting the problems in a suitable phase-space accounting for the past history of $\vartheta$, we prove the existence of a family of exponential attractors $\mathcal E_\omega$ which is robust as $\omega\to 0$.
Citation: S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019
[1]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[2]

Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021125

[3]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[4]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[5]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[6]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[7]

Samir EL Mourchid. On a hypercylicity criterion for strongly continuous semigroups. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 271-275. doi: 10.3934/dcds.2005.13.271

[8]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[9]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[10]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[11]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[12]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[13]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[14]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[15]

Tania Biswas, Elisabetta Rocca. Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021140

[16]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[17]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[18]

S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705

[19]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[20]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]