January  2005, 12(1): 161-174. doi: 10.3934/dcds.2005.12.161

On generalized Benjamin type equations

1. 

IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320

2. 

IMECC-UNICAMP, Campinas, 13081-970, Brazil

Received  May 2003 Revised  June 2004 Published  December 2004

We establish local and global well-posedness for the initial value problem associated to the generalized Benjamin equation and generalizations of this in the energy space. We also studied the limit process of solutions when the surface tension is becoming small. To establish these results we make use of sharp theory developed to the study of the generalized Korteweg-de Vries equation.
Citation: Felipe Linares, M. Scialom. On generalized Benjamin type equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 161-174. doi: 10.3934/dcds.2005.12.161
[1]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[2]

C. H. Arthur Cheng, John M. Hong, Ying-Chieh Lin, Jiahong Wu, Juan-Ming Yuan. Well-posedness of the two-dimensional generalized Benjamin-Bona-Mahony equation on the upper half plane. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 763-779. doi: 10.3934/dcdsb.2016.21.763

[3]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[4]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[5]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[6]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[7]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[8]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[9]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[10]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[11]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[12]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[13]

Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033

[14]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[15]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[16]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[17]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[18]

Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483

[19]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[20]

Didier Pilod. Sharp well-posedness results for the Kuramoto-Velarde equation. Communications on Pure & Applied Analysis, 2008, 7 (4) : 867-881. doi: 10.3934/cpaa.2008.7.867

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]