February  2005, 12(2): 347-354. doi: 10.3934/dcds.2005.12.347

Qualitative properties of solutions for an integral equation

1. 

Department of Mathematics, Yeshiva University, 500 W 185th Street, New York, NY 10033, United States

2. 

Department of Applied Mathematics, University of Colorado at Boulder

3. 

Department of Mathematics, University of Toledo, Toledo OH 43606

Received  August 2003 Revised  June 2004 Published  December 2004

Let $n$ be a positive integer and let $ 0 < \alpha < n.$ In this paper, we study more general integral equation

$ u(x) = \int_{R^n} \frac{1}{|x-y|^{n-\alpha}} K(y) u(y)^p dy.

We establish regularity, radial symmetry, and monotonicity of the solutions. We also consider subcritical cases, super critical cases, and singular solutions in all cases; and obtain qualitative properties for these solutions.

Citation: Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347
[1]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[2]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[3]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[4]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[5]

Nguyen Lam, Guozhen Lu. Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2187-2205. doi: 10.3934/dcds.2012.32.2187

[6]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[7]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[8]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure & Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[9]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[10]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[11]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[12]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[13]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[14]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[15]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[16]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[17]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[18]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[19]

Baoxiang Wang. Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 753-763. doi: 10.3934/dcds.1999.5.753

[20]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]