-
Previous Article
On the stability of a nonlinear maturity structured model of cellular proliferation
- DCDS Home
- This Issue
-
Next Article
Homoclinic tangencies in $R^n$
On a generalized Yorke condition for scalar delayed population models
1. | Departamento de Matemática, Faculdade de Ciências, and CMAF, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa |
2. | Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Universidad de Vigo, Campus Marcosende, 36280 Vigo |
3. | Departamento de Matemática, and CMAT, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal |
4. | Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile |
[1] |
Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505 |
[2] |
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213 |
[3] |
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095 |
[4] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[5] |
Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277 |
[6] |
Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations and Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319 |
[7] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[8] |
Guji Tian, Qi Wang, Chao-Jiang Xu. $C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1023-1039. doi: 10.3934/dcds.2016.36.1023 |
[9] |
TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure and Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034 |
[10] |
Eduardo Liz, Victor Tkachenko, Sergei Trofimchuk. Yorke and Wright 3/2-stability theorems from a unified point of view. Conference Publications, 2003, 2003 (Special) : 580-589. doi: 10.3934/proc.2003.2003.580 |
[11] |
Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096 |
[12] |
Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17 |
[13] |
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 |
[14] |
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 |
[15] |
Dong Liang, Jianhong Wu, Fan Zhang. Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences & Engineering, 2005, 2 (1) : 111-132. doi: 10.3934/mbe.2005.2.111 |
[16] |
Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969 |
[17] |
Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343 |
[18] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[19] |
Yuanxian Hui, Genghong Lin, Jianshe Yu, Jia Li. A delayed differential equation model for mosquito population suppression with sterile mosquitoes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4659-4676. doi: 10.3934/dcdsb.2020118 |
[20] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]