July  2005, 12(4): 569-594. doi: 10.3934/dcds.2005.12.569

Exponential stability for the resonant D'Alembert model of celestial mechanics

1. 

Dipartimento di Matematica, Università "Roma Tre", Largo S. L. Murialdo 1, 00146 Roma, Italy

Received  May 2004 Revised  May 2004 Published  January 2005

We consider the classical D'Alembert Hamiltonian model for a rotationally symmetric planet revolving on Keplerian ellipse around a fixed star in an almost exact "day/year" resonance and prove that, notwithstanding proper degeneracies, the system is stable for exponentially long times, provided the oblateness and the eccentricity are suitably small.
Citation: Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569
[1]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[2]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[3]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[4]

Jinxin Xue. Continuous averaging proof of the Nekhoroshev theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3827-3855. doi: 10.3934/dcds.2015.35.3827

[5]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[6]

Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

[7]

Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas. Nonlinear stability of elliptic equilibria in hamiltonian systems with exponential time estimates. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5183-5208. doi: 10.3934/dcds.2021073

[8]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[9]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[10]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[13]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[14]

Yuri Kifer. Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1187-1201. doi: 10.3934/dcds.2005.13.1187

[15]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[16]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[17]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

[18]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[19]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[20]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]