July  2005, 12(4): 723-736. doi: 10.3934/dcds.2005.12.723

Invariant measures for bipermutative cellular automata

1. 

Department of Mathematics, Trent University, Peterborough, Ontario, K9L 1Z8, Canada

Received  June 2003 Revised  December 2004 Published  January 2005

A right-sided, nearest neighbour cellular automaton (RNNCA) is a continuous transformation $\Phi:\mathcal A^{\mathbb Z} \rightarrow\mathcal A^{\mathbb Z}$ determined by a local rule $\phi:\mathcal A^{\{0,1\}}\rightarrow\mathcal A$ so that, for any $\mathbf a\in\mathcal A^{\mathbb Z}$ and any $z\in\mathbb Z$, $\Phi(\mathbf a)_z = \phi(a_z,a_{z+1})$. We say that $\Phi$ is bipermutative if, for any choice of $a\in\mathcal A$, the map $\mathcal A\ni b \mapsto \phi(a,b)\in\mathcal A$ is bijective, and also, for any choice of $b\in\mathcal A$, the map $\mathcal A\ni a \mapsto \phi(a,b)\in\mathcal A$ is bijective.
We characterize the invariant measures of bipermutative RNNCA. First we introduce the equivalent notion of a quasigroup CA. Then we characterize $\Phi$-invariant measures when $\mathcal A$ is a (nonabelian) group, and $\phi(a,b) = a\cdot b$. Then we show that, if $\Phi$ is any bipermutative RNNCA, and $\mu$ is $\Phi$-invariant, then $\Phi$ must be $\mu$-almost everywhere $K$-to-1, for some constant $K$. We then characterize invariant measures when $\mathcal \mathcal A^{\mathbb Z}$ is a group shift and $\Phi$ is an endomorphic CA.
Citation: Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723
[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]