-
Previous Article
$L^\infty$ jenergies on discontinuous functions
- DCDS Home
- This Issue
-
Next Article
Remarks on regularities for the 3D MHD equations
Versal Unfoldings for rank--2 singularities of positive quadratic differential forms: The remaining case
1. | Universidad de Santiago de Chile, Departamento de Matemática y C.C., Casilla 307, Correo 2, Santiago |
2. | Universidad Técnica Federico Santa María, Departamento de Matemática, Casilla 110-V, Valparaíso, Chile |
[1] |
Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283 |
[2] |
Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020 |
[3] |
Laura DeMarco, Holly Krieger, Hexi Ye. Common preperiodic points for quadratic polynomials. Journal of Modern Dynamics, 2022, 18: 363-413. doi: 10.3934/jmd.2022012 |
[4] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
[5] |
Anish Ghosh, Dubi Kelmer. A quantitative Oppenheim theorem for generic ternary quadratic forms. Journal of Modern Dynamics, 2018, 12: 1-8. doi: 10.3934/jmd.2018001 |
[6] |
R.D.S. Oliveira, F. Tari. On pairs of differential $1$-forms in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 519-536. doi: 10.3934/dcds.2000.6.519 |
[7] |
Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 |
[8] |
P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 |
[9] |
Carlos Gutierrez, Víctor Guíñez, Alvaro Castañeda. Quartic differential forms and transversal nets with singularities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 225-249. doi: 10.3934/dcds.2010.26.225 |
[10] |
Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185 |
[11] |
Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013 |
[12] |
Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112. |
[13] |
Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243 |
[14] |
Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359 |
[15] |
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276 |
[16] |
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 |
[17] |
Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011 |
[18] |
M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511 |
[19] |
Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345 |
[20] |
Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]