October  2005, 12(5): 905-928. doi: 10.3934/dcds.2005.12.905

$L^\infty$ jenergies on discontinuous functions


DAEIMI, Università di Cassino, via Di Biasio, 03043 Cassino (FR), Italy


Dipartimento di Matematica, Università di Roma 'Tor Vergata', via della Ricerca Scientifica, 00133 Roma, Italy


SISSA, via Beirut 2-4, 34100 Trieste, Italy

Received  January 2004 Revised  October 2004 Published  February 2005

We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on ($BV$ and) $SBV$ of the model form $F(u)=$sup$f(u')\vee$sup$g([u])$, and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on $SBV$.
Citation: Roberto Alicandro, Andrea Braides, Marco Cicalese. $L^\infty$ jenergies on discontinuous functions. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 905-928. doi: 10.3934/dcds.2005.12.905

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems and Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507


Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205


Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43


Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051


Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002


Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations and Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363


Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225


Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252


Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129


W. R. Madych. Behavior in $ L^\infty $ of convolution transforms with dilated kernels. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022005


Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575


Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215


Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048


O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077


Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems and Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093


Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989


Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179


Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635


Horst Heck, Matthias Hieber, Kyriakos Stavrakidis. $L^\infty$-estimates for parabolic systems with VMO-coefficients. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 299-309. doi: 10.3934/dcdss.2010.3.299


Antonio Vitolo. $H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1315-1329. doi: 10.3934/cpaa.2011.10.1315

2020 Impact Factor: 1.392


  • PDF downloads (74)
  • HTML views (0)
  • Cited by (0)

[Back to Top]