\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The exponential behavior of Navier-Stokes equations with time delay external force

Abstract Related Papers Cited by
  • In this paper we discuss the existence and the exponential behaviour of the solutions to a 2D-Navier-Stokes equation with time delay external force $f(t-\tau(t),u(t-\tau (t))),$ where $f(t,u)$ is a locally Lipschitz function in $u$ and $|f(t,u)|^2\leq a|u|^k+b_f,$ $a>0,b_f\geq 0,k\geq 2.$ $\tau (t)$ is a differentiable function with $0\leq \tau (t)\leq r, r>0,\frac{d}{dt}\tau (t)\leq M<1,$ $M$ a constant. We show the relations between the kinematic viscosity $\nu ,$ time delay $r>0$ and $\lambda_1, a, b_{f}, k, M$ play an important role. Furthermore, we consider the exponential behaviour of the strong solutions to a 3D-Navier-Stokes equation with time delay external force $f(t-\tau(t),u(t-\tau (t))),$ where $f(t,u)$ is a locally Lipschitz function in $u$ and $|f(t,u)|^2\leq a|u|^2+b_f,$ $a>0,b_f\geq 0.$ We extend Corollary 64.5[11]. Furthermore we discuss the existence of a periodic solution.
    Mathematics Subject Classification: 35Q35, 35Q30, 35B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return