-
Previous Article
Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions
- DCDS Home
- This Issue
-
Next Article
Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms
Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation
1. | Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States |
2. | School of Mathematics and System Science, Shandong University, Jinan, 250100, China |
3. | Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States |
[1] |
Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052 |
[2] |
Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko. Derivation of cable equation by multiscale analysis for a model of myelinated axons. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 815-839. doi: 10.3934/dcdsb.2019191 |
[3] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[4] |
David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319 |
[5] |
Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511 |
[6] |
Annalisa Malusa, Matteo Novaga. Crystalline evolutions in chessboard-like microstructures. Networks and Heterogeneous Media, 2018, 13 (3) : 493-513. doi: 10.3934/nhm.2018022 |
[7] |
Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064 |
[8] |
S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423 |
[9] |
Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 |
[10] |
Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations and Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297 |
[11] |
M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755 |
[12] |
Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292 |
[13] |
Denis Mercier. Spectrum analysis of a serially connected Euler-Bernoulli beams problem. Networks and Heterogeneous Media, 2009, 4 (4) : 709-730. doi: 10.3934/nhm.2009.4.709 |
[14] |
In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012 |
[15] |
Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341 |
[16] |
Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271 |
[17] |
Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833 |
[18] |
David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics and Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57 |
[19] |
Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013 |
[20] |
Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]