-
Previous Article
A Finite-dimensional attractor for a nonequilibrium Stefan problem with heat losses
- DCDS Home
- This Issue
-
Next Article
On the blow-up for a discrete Boltzmann equation in the plane
Necessary conditions for the existence of wandering triangles for cubic laminations
1. | Department of Mathematics, University of Alabama in Birmingham, University Station, Birmingham, AL 35294-1170, United States |
In this paper for a closed lamination on the unit circle invariant under $z\mapsto z^3$ (cubic lamination) we prove that if it has a wandering triangle then there must be two distinct recurrent critical points in the corresponding quotient space ("topological Julia set") $J$ with the same limit set coinciding with the limit set of any wandering vertex (wandering vertices in $J$ correspond to wandering gaps in the lamination).
[1] |
Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929 |
[2] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[3] |
Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure and Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211 |
[4] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[5] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[6] |
Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975 |
[7] |
Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327 |
[8] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
[9] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[10] |
Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321 |
[11] |
Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114 |
[12] |
Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453 |
[13] |
Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511 |
[14] |
Song Shao, Xiangdong Ye. Non-wandering sets of the powers of maps of a star. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1175-1184. doi: 10.3934/dcds.2003.9.1175 |
[15] |
Klara Stokes, Maria Bras-Amorós. Associating a numerical semigroup to the triangle-free configurations. Advances in Mathematics of Communications, 2011, 5 (2) : 351-371. doi: 10.3934/amc.2011.5.351 |
[16] |
Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003 |
[17] |
Yang Shen, Jiazhong Yang. Hearing the shape of right triangle billiard tables. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5537-5549. doi: 10.3934/dcds.2021087 |
[18] |
Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103 |
[19] |
Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006 |
[20] |
Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]