October  2005, 13(5): 1305-1324. doi: 10.3934/dcds.2005.13.1305

Polymorphisms, Markov processes, quasi-similarity

1. 

St. Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, St. Petersburg, 191023, Russian Federation

Received  October 2004 Revised  March 2005 Published  September 2005

In this paper we develop the theory of polymorphisms of measure spaces, which is a generalization of the theory of measure-preserving transformations. We describe the main notions and discuss relations to the theory of Markov processes, operator theory, ergodic theory, etc. We formulate the important notion of quasi-similarity and consider quasi-similarity between polymorphisms and automorphisms.

The question is as follows: is it possible to have a quasi-similarity between a measure-preserving automorphism $T$ and a polymorphism $\Pi$ (that is not an automorphism)? In less definite terms: what kind of equivalence can exist between deterministic and random (Markov) dynamical systems? We give the answer: every nonmixing prime polymorphism is quasi-similar to an automorphism with positive entropy, and every $K$-automorphism $T$ is quasi-similar to a polymorphism $\Pi$ that is a special random perturbation of the automorphism $T$.
Citation: A. M. Vershik. Polymorphisms, Markov processes, quasi-similarity. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1305-1324. doi: 10.3934/dcds.2005.13.1305
[1]

Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252

[2]

James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353

[3]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[4]

Xu Zhang, Yuming Shi, Guanrong Chen. Coupled-expanding maps under small perturbations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1291-1307. doi: 10.3934/dcds.2011.29.1291

[5]

Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163

[6]

Manuela Giampieri, Stefano Isola. A one-parameter family of analytic Markov maps with an intermittency transition. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 115-136. doi: 10.3934/dcds.2005.12.115

[7]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[8]

Xin Zhang, Shuangling Yang. Complex dynamics in a quasi-periodic plasma perturbations model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4013-4043. doi: 10.3934/dcdsb.2020272

[9]

Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937

[10]

Marina Gonchenko, Sergey Gonchenko, Klim Safonov. Reversible perturbations of conservative Hénon-like maps. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1875-1895. doi: 10.3934/dcds.2020343

[11]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[12]

Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31.

[13]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[14]

Jie Liu, Jianguo Si. Invariant tori of a nonlinear Schrödinger equation with quasi-periodically unbounded perturbations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 25-68. doi: 10.3934/cpaa.2017002

[15]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[16]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589

[17]

Àngel Jorba, Joan Carles Tatjer. A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 537-567. doi: 10.3934/dcdsb.2008.10.537

[18]

Jinjing Jiao, Guanghua Shi. Quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5157-5180. doi: 10.3934/cpaa.2020231

[19]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[20]

Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics and Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]