April  2005, 13(1): 175-194. doi: 10.3934/dcds.2005.13.175

Critical points for a class of nondifferentiable functions and applications

1. 

Dipartimento D.I.M.E.T., Università degli Studi Mediterranea di Reggio Calabria, Feo di Vito, 89100 Reggio Calabria, Italy

2. 

Dipartimento P.A.U., Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio Calabria, Italy

3. 

Département de Mathématiques, Université de Perpignan, Avenue de Villeneuve 52, 66860 Perpignan Cedex, France

Received  March 2004 Revised  November 2004 Published  March 2005

Some critical point theorems involving functionals that are the sum of a locally Lipschitz continuous term and of a convex, proper, besides lower semicontinuous, function are established. A recent existence result of Adly, Buttazzo, and Théra [1, Theorem 2.3] is improved. Applications to elliptic variational-hemivariational inequalities are then examined.
Citation: P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175
[1]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[2]

Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations & Control Theory, 2020, 9 (4) : 1073-1087. doi: 10.3934/eect.2020044

[3]

Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations & Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058

[4]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[5]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[6]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[7]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[8]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[9]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[10]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[11]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[12]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[13]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[14]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[15]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[16]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[17]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052

[18]

Savin Treanţă. On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021027

[19]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[20]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]