
Previous Article
On a hypercylicity criterion for strongly continuous semigroups
 DCDS Home
 This Issue
 Next Article
Robustly transitive singular sets via approach of an extended linear Poincaré flow
1.  LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China, China 
2.  School of Mathematic Sciences, Peking University, Beijing, 100871 
[1] 
Shengzhi Zhu, Shaobo Gan, Lan Wen. Indices of singularities of robustly transitive sets. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 945957. doi: 10.3934/dcds.2008.21.945 
[2] 
Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 867888. doi: 10.3934/dcds.2018037 
[3] 
Pablo G. Barrientos, Artem Raibekas. Robustly nonhyperbolic transitive symplectic dynamics. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 59936013. doi: 10.3934/dcds.2018259 
[4] 
Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems  A, 2015, 35 (1) : 353365. doi: 10.3934/dcds.2015.35.353 
[5] 
Yi Shi, Shaobo Gan, Lan Wen. On the singularhyperbolicity of star flows. Journal of Modern Dynamics, 2014, 8 (2) : 191219. doi: 10.3934/jmd.2014.8.191 
[6] 
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems  A, 2013, 33 (7) : 29012909. doi: 10.3934/dcds.2013.33.2901 
[7] 
Ángela JiménezCasas, Aníbal RodríguezBernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670677. doi: 10.3934/proc.2015.0670 
[8] 
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 922. doi: 10.3934/nhm.2013.8.9 
[9] 
Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 23512369. doi: 10.3934/cpaa.2012.11.2351 
[10] 
Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems  A, 1996, 2 (1) : 122. doi: 10.3934/dcds.1996.2.1 
[11] 
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the twofluid model for twophase incompressible flow. Discrete & Continuous Dynamical Systems  B, 2003, 3 (4) : 541563. doi: 10.3934/dcdsb.2003.3.541 
[12] 
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227241. doi: 10.3934/jmd.2010.4.227 
[13] 
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187208. doi: 10.3934/jmd.2008.2.187 
[14] 
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527552. doi: 10.3934/jmd.2013.7.527 
[15] 
Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 7185. doi: 10.3934/jimo.2007.3.71 
[16] 
K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete & Continuous Dynamical Systems  A, 2000, 6 (4) : 803808. doi: 10.3934/dcds.2000.6.803 
[17] 
Andy Hammerlindl. Partial hyperbolicity on 3dimensional nilmanifolds. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 36413669. doi: 10.3934/dcds.2013.33.3641 
[18] 
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 47394759. doi: 10.3934/dcds.2016006 
[19] 
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81121. doi: 10.3934/jmd.2015.9.81 
[20] 
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonalcurvature flow. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020390 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]