\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Instability of bound states for 2D nonlinear Schrödinger equations

Abstract Related Papers Cited by
  • We study standing wave solutions of the form $e^{i(\omega t+m\theta)}\phi(r)$ to nonlinear Schrödinger equation

    $iu_t+\Delta u+|u|^{p-1}u=0\quad$ for $x\in \mathbb R^2$

    and $t>0$, where $(r,\theta)$ are polar coordinates and $m\in\mathbb N$. Using the Evans function, we prove linear instability of standing wave solutions with nodes in the case where $p>3$.

    Mathematics Subject Classification: 35B35, 35Q55, 35J60, 35B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return