# American Institute of Mathematical Sciences

February  2005, 13(2): 429-450. doi: 10.3934/dcds.2005.13.429

## A tridimensional phase-field model with convection for phase change of an alloy

 1 IMECC-UNICAMP, CP 6065, Campinas-SP, 13081-970, Brazil 2 Departamento de Matemática, ICMC-USP, CP 668, São Carlos-SP, 13560-970, Brazil

Received  June 2004 Revised  February 2005 Published  April 2005

We consider a tridimensional phase-field model for a solidification/melting non-stationary process, which incorporates the physics of binary alloys, thermal properties and fluid motion of non-solidified material. The model is a free-boundary value problem consisting of a highly non-linear parabolic system including a phase-field equation, a heat equation, a concentration equation and a variant of the Navier-Stokes equations modified by a penalization term of Carman-Kozeny type to model the flow in mushy regions and a Boussinesq type term to take into account the effects of the differences in temperature and concentration in the flow. A proof of existence of generalized solutions for the system is given. For this, the problem is firstly approximated and a sequence of approximate solutions is obtained by Leray-Schauder's fixed point theorem. A solution of the original problem is then found by using compactness arguments.
Citation: José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429
 [1] P.K. Galenko, E.V. Abramova, D.M. Herlach. Phase-field study of solute trapping effect in rapid solidification. Conference Publications, 2011, 2011 (Special) : 457-466. doi: 10.3934/proc.2011.2011.457 [2] Denis Danilov, Britta Nestler. Phase-field modelling of nonequilibrium partitioning during rapid solidification in a non-dilute binary alloy. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1035-1047. doi: 10.3934/dcds.2006.15.1035 [3] Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693 [4] Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63 [5] Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089 [6] Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949 [7] Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399 [8] Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539 [9] Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1 [10] Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683 [11] S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019 [12] Peng Yu, Qiang Du. A variational construction of anisotropic mobility in phase-field simulation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 391-406. doi: 10.3934/dcdsb.2006.6.391 [13] Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227 [14] M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827 [15] Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077 [16] Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653 [17] Bosheng Chen, Huilai Li, Changchun Liu. Optimal distributed control for a coupled phase-field system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021110 [18] Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167 [19] Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 [20] Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

2020 Impact Factor: 1.392