
Previous Article
A perturbation theorem for linear Hamiltonian systems with bounded orbits
 DCDS Home
 This Issue

Next Article
Longtime behavior for competitiondiffusion systems via viscosity comparison
Asymptotic stability of solitary waves for the BenjaminBonaMahony equation
1.  Laboratoire de Mathématiques, Université ParisSud, 91405 Orsay, France 
$(1\partial^2_x)u_t+(u+u^2)_x=0.$
We prove that a solution initially close to a solitary wave, once conveniently translated, converges weakly in $H^1(\mathbb R)$, as time goes to infinity, to a possibly different solitary wave. The proof is based on a Liouville type theorem for the flow close to the solitary waves, and makes an extensive use of a monotonicity property.
[1] 
Omid Nikan, Seyedeh Mahboubeh MolaviArabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized longwave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020466 
[2] 
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020345 
[3] 
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitarywave solutions of BenjaminOno and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 87111. doi: 10.3934/dcds.2020215 
[4] 
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $supercritical case. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 701746. doi: 10.3934/dcds.2020298 
[5] 
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with supcubic nonlinearity. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 569600. doi: 10.3934/dcds.2020270 
[6] 
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020432 
[7] 
Ahmad Z. Fino, Wenhui Chen. A global existence result for twodimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 53875411. doi: 10.3934/cpaa.2020243 
[8] 
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : . doi: 10.3934/era.2020119 
[9] 
XinGuang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D BrinkmanForchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 13951418. doi: 10.3934/era.2020074 
[10] 
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic FisherKPP equations. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020323 
[11] 
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 56095626. doi: 10.3934/cpaa.2020256 
[12] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020450 
[13] 
Marc HomsDones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 899919. doi: 10.3934/dcds.2020303 
[14] 
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 413438. doi: 10.3934/dcds.2020136 
[15] 
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020384 
[16] 
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 489505. doi: 10.3934/dcds.2020265 
[17] 
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020317 
[18] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
[19] 
Cheng He, Changzheng Qu. Global weak solutions for the twocomponent Novikov equation. Electronic Research Archive, 2020, 28 (4) : 15451562. doi: 10.3934/era.2020081 
[20] 
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multidimensional space. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 395412. doi: 10.3934/dcds.2020364 
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]