April  2005, 13(1): 63-102. doi: 10.3934/dcds.2005.13.63

Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori

1. 

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3, Canada

Received  December 2003 Revised  December 2004 Published  March 2005

The paper presents a study of a renormalization group transformation acting on an appropriate space of Hamiltonian functions in two angle and two action variables. In particular, we study the existence of real invariant tori, on which the flow is conjugate to a rotation with a rotation number equal to a quadratic irrational ($\omega$-tori). We demonstrate that the stable manifold of the renormalization operator at the "simple" fixed point contains isoenergetically degenerate Hamiltonians possessing shearless $\omega$-tori. We also show that one-parameter families of Hamiltonians transverse to the stable manifold undergo a bifurcation: for a certain range of the parameter values the members of these families posses two distinct $\omega$-tori, the members of such families lying on the stable manifold posses one shearless $\omega$-torus, while the members corresponding to other parameter values do not posses any.
Citation: Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63
[1]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[2]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[3]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[4]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[5]

Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162

[6]

Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086

[7]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[8]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[9]

Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477

[10]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[11]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

[12]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[13]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[14]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[15]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[16]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[17]

Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6681-6707. doi: 10.3934/dcds.2020162

[18]

Gemma Huguet, Rafael de la Llave, Yannick Sire. Computation of whiskered invariant tori and their associated manifolds: New fast algorithms. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1309-1353. doi: 10.3934/dcds.2012.32.1309

[19]

Lianpeng Yang, Xiong Li. Existence of periodically invariant tori on resonant surfaces for twist mappings. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1389-1409. doi: 10.3934/dcds.2020081

[20]

Harry Dankowicz, Jan Sieber. Sensitivity analysis for periodic orbits and quasiperiodic invariant tori using the adjoint method. Journal of Computational Dynamics, 2022, 9 (3) : 329-369. doi: 10.3934/jcd.2022006

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]