Advanced Search
Article Contents
Article Contents

Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces

Abstract Related Papers Cited by
  • The existence and structure of uniform attractors in $V$ is proved for nonautonomous 2D Navier-stokes equations on bounded domain with a new class of external forces, termed normal in $L_{l o c}^2(\mathbb R; H)$ (see Definition 3.1), which are translation bounded but not translation compact in $L_{l o c}^2(\mathbb R; H)$. To this end, some abstract results are established. First, a characterization on the existence of uniform attractor for a family of processes is presented by the concept of measure of noncompactness as well as a method to verify it. Then, the structure of the uniform attractor is obtained by constructing skew product flow on the extended phase space with weak topology. Finally, the uniform attractor of a process is identified with that of a family of processes with symbols in the closure of the translation family of the original symbol in a Banach space with weak topology.
    Mathematics Subject Classification: 35B40, 35B41, 35Q30, 76D05.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint