
Previous Article
A priori estimates and precise regularity for parabolic systems with discontinuous data
 DCDS Home
 This Issue

Next Article
Properties of blowup solutions to a parabolic system with nonlinear localized terms
Attractors for nonautonomous 2d NavierStokes equations with normal external forces
1.  Department of Mathematics, Lanzhou University, Lanzhou, Gansu, 730000, China, China 
[1] 
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $NavierStokes equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 31373157. doi: 10.3934/cpaa.2020136 
[2] 
JeanPierre Raymond. Stokes and NavierStokes equations with a nonhomogeneous divergence condition. Discrete and Continuous Dynamical Systems  B, 2010, 14 (4) : 15371564. doi: 10.3934/dcdsb.2010.14.1537 
[3] 
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multivalued process generated by reactiondiffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 43434370. doi: 10.3934/dcds.2014.34.4343 
[4] 
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous NavierStokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95110. doi: 10.3934/dcds.1996.2.95 
[5] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[6] 
Vena Pearl Bongolanwalsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous NavierStokes system. Discrete and Continuous Dynamical Systems  B, 2003, 3 (2) : 255262. doi: 10.3934/dcdsb.2003.3.255 
[7] 
Zhiting Ma. NavierStokes limit of globally hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (1) : 175197. doi: 10.3934/krm.2021001 
[8] 
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305312. doi: 10.3934/proc.2003.2003.305 
[9] 
Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D NavierStokesVoigt equations and their NavierStokes limit. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 375403. doi: 10.3934/dcds.2010.28.375 
[10] 
Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$continuous family of strong solutions to the Euler or NavierStokes equations with the NavierType boundary condition. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 13531373. doi: 10.3934/dcds.2010.27.1353 
[11] 
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D NavierStokesVoigt equations with memory and singularly oscillating external forces. Evolution Equations and Control Theory, 2021, 10 (1) : 123. doi: 10.3934/eect.2020039 
[12] 
Linjie Xiong. Incompressible Limit of isentropic NavierStokes equations with Navierslip boundary. Kinetic and Related Models, 2018, 11 (3) : 469490. doi: 10.3934/krm.2018021 
[13] 
Matthew Paddick. The strong inviscid limit of the isentropic compressible NavierStokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 26732709. doi: 10.3934/dcds.2016.36.2673 
[14] 
Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped NavierStokes equations in $\mathbb R^2$. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 20852102. doi: 10.3934/dcds.2016.36.2085 
[15] 
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the threedimensional NavierStokes equations. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 16111631. doi: 10.3934/dcds.2010.27.1611 
[16] 
Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D NavierStokes equations:Ⅰ. Discrete and Continuous Dynamical Systems  B, 2017, 22 (6) : 23392350. doi: 10.3934/dcdsb.2017101 
[17] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[18] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[19] 
Jie Liao, XiaoPing Wang. Stability of an efficient NavierStokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems  B, 2012, 17 (1) : 153171. doi: 10.3934/dcdsb.2012.17.153 
[20] 
Olivier Goubet, Wided Kechiche. Uniform attractor for nonautonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639651. doi: 10.3934/cpaa.2011.10.639 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]