July  2005, 13(4): 961-983. doi: 10.3934/dcds.2005.13.961

On non quasiconvex problems of the calculus of variations

1. 

Department of Mathématics, EPFL, 1015 Lausanne

2. 

School of Mathematics, Georgia Tech, 30332, Atlanta, GA, United States

3. 

Section of Mathematics, EPFL, 1015 Lausanne, Switzerland

Received  September 2004 Revised  March 2005 Published  August 2005

We study existence of minimizers for problems of the type

inf{$\int_\Omega f(Du(x)) dx:u=u_{\xi _0}$ on $\partial\Omega$ }

where $f$ is non quasiconvex and $u_{\xi_0}$ is an affine function. Applying some new results on differential inclusions, we get sufficient conditions. We also study necessary conditions. We then consider some examples.

Citation: Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961
[1]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[2]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[3]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[4]

Ziqing Yuana, Jianshe Yu. Existence and multiplicity of nontrivial solutions of biharmonic equations via differential inclusion. Communications on Pure & Applied Analysis, 2020, 19 (1) : 391-405. doi: 10.3934/cpaa.2020020

[5]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[6]

Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353

[7]

Sandro Zagatti. Minimization of non quasiconvex functionals by integro-extremization method. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 625-641. doi: 10.3934/dcds.2008.21.625

[8]

Francesca Faraci, Antonio Iannizzotto. Three nonzero periodic solutions for a differential inclusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 779-788. doi: 10.3934/dcdss.2012.5.779

[9]

Yongjian Liu, Zhenhai Liu, Dumitru Motreanu. Differential inclusion problems with convolution and discontinuous nonlinearities. Evolution Equations & Control Theory, 2020, 9 (4) : 1057-1071. doi: 10.3934/eect.2020056

[10]

Anna Maria Candela, Addolorata Salvatore. Existence of minimizers for some quasilinear elliptic problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3335-3345. doi: 10.3934/dcdss.2020241

[11]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

[12]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[13]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[14]

Duvan Henao, Rémy Rodiac. On the existence of minimizers for the neo-Hookean energy in the axisymmetric setting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4509-4536. doi: 10.3934/dcds.2018197

[15]

Pierpaolo Soravia. Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation. Mathematical Control & Related Fields, 2012, 2 (4) : 399-427. doi: 10.3934/mcrf.2012.2.399

[16]

Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations & Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036

[17]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307

[20]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (9)

[Back to Top]