July  2005, 13(4): 985-1005. doi: 10.3934/dcds.2005.13.985

Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions


Erwin Schroedinger Institute, Boltzmanngasse 9, A-1090 Vienna, Austria


Department of Mathematics, Penn State University, University Park, State College, PA 16802

Received  November 2004 Revised  May 2005 Published  August 2005

We give a proof of cocycle rigidity in Hölder and smooth categories for Cartan actions on $SL(n, \mathbb R)$/$\Gamma$ and $SL(n, \mathbb C)$/$\Gamma$ for $n\ge 3$ and $\Gamma$ cocompact lattice, and for restrictions of those actions to subspaces which contain a two-dimensional plane in general position. This proof does not use harmonic analysis, it relies completely on the structure of stable and unstable foliations of the action. The key new ingredient is the use of the description of generating relations in the group $SL_n$.
Citation: Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012


Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073


Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264


Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.338


  • PDF downloads (37)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]