January  2006, 14(1): 31-62. doi: 10.3934/dcds.2006.14.31

Interacting spots in reaction diffusion systems

1. 

Faculty of Mathematics, Kyushu University, Ropponmatsu Chuo-ku, Fukuoka, 810-8560, Japan

2. 

School of Science and Technology, Meiji University, Higashimita 1-1-1 Tama-ku Kawasaki, 214-8571, Japan

3. 

Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Kanazawa, 920-1192, Japan

Received  September 2004 Revised  February 2005 Published  October 2005

This paper is concerned with the dynamics of travelling spot solutions in two dimensions. Travelling spot solutions are constructed under the bifurcation structure with Jordan block type degeneracy. It is shown that if the velocity is very slow, such travelling spots possess reflection property. In order to do it, we derive the reduced ordinary differential equations describing the dynamics of interacting travelling spots in RD systems by using center manifold theory. This reduction enables us to prove that two very slowly travelling spots reflect before collision as if they were elastic particles.
Citation: S.-I. Ei, M. Mimura, M. Nagayama. Interacting spots in reaction diffusion systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 31-62. doi: 10.3934/dcds.2006.14.31
[1]

Yan-Yu Chen, Yoshihito Kohsaka, Hirokazu Ninomiya. Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 697-714. doi: 10.3934/dcdsb.2014.19.697

[2]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[3]

Yuanwei Qi. Travelling fronts of reaction diffusion systems modeling auto-catalysis. Conference Publications, 2009, 2009 (Special) : 622-629. doi: 10.3934/proc.2009.2009.622

[4]

H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058

[5]

Xiao-Hui Li, Huo-Jun Ruan. The "hot spots" conjecture on higher dimensional Sierpinski gaskets. Communications on Pure & Applied Analysis, 2016, 15 (1) : 287-297. doi: 10.3934/cpaa.2016.15.287

[6]

Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115

[7]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[8]

Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833

[9]

Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591

[10]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[11]

Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189

[12]

Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041

[13]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[14]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[15]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[16]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[17]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[18]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[19]

Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653

[20]

Dieter Bothe, Petra Wittbold. Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2239-2260. doi: 10.3934/cpaa.2012.11.2239

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]