April  2006, 14(2): 343-354. doi: 10.3934/dcds.2006.14.343

Heteroclinic orbits and rotation sets for twist maps

1. 

Department of Mathematics, Instituto Tecnológico Autónomo de México, Río Hondo # 1., Tizapán San Angel, México DF 01000, Mexico

Received  November 2004 Revised  May 2005 Published  November 2005

We show how the shadowing property can be used in connection to rotation sets. We review the concept of periodic chains and the shadowing rotation property, and study a class of diffeomorphisms with invariant sets that have such property. In particular, we consider invariant sets that arise from homoclinic and heteroclinic connections for twist maps in higher dimensions. As a consequence, we can show the existence of a family of twist maps, each one with an open set of rotation vectors that are realized by points that are close to a fixed point.
Citation: Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343
[1]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[2]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[3]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[4]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[5]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[6]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[7]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[8]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[9]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[10]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[11]

Thorsten Hüls, Yongkui Zou. On computing heteroclinic trajectories of non-autonomous maps. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 79-99. doi: 10.3934/dcdsb.2012.17.79

[12]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[13]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[14]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[15]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[16]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[17]

Miguel Mendes. A note on the coding of orbits in certain discontinuous maps. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 369-382. doi: 10.3934/dcds.2010.27.369

[18]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[19]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[20]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]