April  2006, 14(2): 355-363. doi: 10.3934/dcds.2006.14.355

A note about stable transitivity of noncompact extensions of hyperbolic systems

1. 

Department of Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 7XH

2. 

Department of Mathematics, West Chester University, West Chester, PA 19383, United States

3. 

Department of Mathematics, University of Houston, Houston, TX 77204-3008

Received  November 2004 Revised  February 2005 Published  November 2005

Let $f:X\to X$ be the restriction to a hyperbolic basic set of a smooth diffeomorphism. If $G$ is the special Euclidean group $SE(2)$ we show that in the set of $C^2$ $G$-extensions of $f$ there exists an open and dense subset of stably transitive transformations. If $G=K\times \mathbb R^n$, where $K$ is a compact connected Lie group, we show that an open and dense set of $C^2$ $G$-extensions satisfying a certain separation condition are transitive. The separation condition is necessary.
Citation: Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355
[1]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[2]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[3]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[4]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[5]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[6]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[7]

Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197

[8]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[9]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[10]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[11]

Dongfeng Zhang, Junxiang Xu, Xindong Xu. Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2851-2877. doi: 10.3934/dcds.2018123

[12]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[13]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[14]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[15]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[16]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[17]

M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure & Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495

[18]

Joachim Escher, Rossen Ivanov, Boris Kolev. Euler equations on a semi-direct product of the diffeomorphisms group by itself. Journal of Geometric Mechanics, 2011, 3 (3) : 313-322. doi: 10.3934/jgm.2011.3.313

[19]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[20]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]