
Previous Article
A convergent numerical scheme for the CamassaHolm equation based on multipeakons
 DCDS Home
 This Issue

Next Article
On $C^1$persistently expansive homoclinic classes
Optimal fusion of sensor data for Kalman filtering
1.  Department of Mathematics, Zhongshan University, Guangzhou 510275, China 
2.  Department of Mathematics and Statistics, Curtin University, G.P.O. Box U1987, Perth, WA 6845, Australia 
3.  School of Information Technology and Department of Mathematics, University of Ottawa, Ottawa K1N 6N5, Canada 
4.  Department of Mathematics, Sun Yatsen University, Guangzhou, 510275 
5.  Department of Electrical and Computer Engineering, Curtin University of Technology, Perth W.A. 6845, Australia 
[1] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[2] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[3] 
H. W. J. Lee, Y. C. E. Lee, Kar Hung Wong. Differential equation approximation and enhancing control method for finding the PID gain of a quartercar suspension model with statedependent ODE. Journal of Industrial and Management Optimization, 2020, 16 (5) : 23052330. doi: 10.3934/jimo.2019055 
[4] 
M. Alipour, M. A. Vali, A. H. Borzabadi. A hybrid parametrization approach for a class of nonlinear optimal control problems. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 493506. doi: 10.3934/naco.2019037 
[5] 
Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial and Management Optimization, 2015, 11 (1) : 199216. doi: 10.3934/jimo.2015.11.199 
[6] 
Junyoung Jang, Kihoon Jang, HeeDae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667691. doi: 10.3934/mbe.2018030 
[7] 
Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a singlelink manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems  S, 2020, 13 (6) : 18131823. doi: 10.3934/dcdss.2020107 
[8] 
Shihchung Chiang. Numerical optimal unbounded control with a singular integrodifferential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129137. doi: 10.3934/proc.2013.2013.129 
[9] 
Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems  B, 2014, 19 (9) : 27092738. doi: 10.3934/dcdsb.2014.19.2709 
[10] 
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 44554475. doi: 10.3934/dcds.2015.35.4455 
[11] 
Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Meanfield control and Riccati equations. Networks and Heterogeneous Media, 2015, 10 (3) : 699715. doi: 10.3934/nhm.2015.10.699 
[12] 
Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197223. doi: 10.3934/jgm.2011.3.197 
[13] 
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 10671094. doi: 10.3934/mbe.2013.10.1067 
[14] 
Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quadrotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 10791100. doi: 10.3934/jimo.2021009 
[15] 
JanHendrik Webert, Philip E. Gill, SvenJoachim Kimmerle, Matthias Gerdts. A study of structureexploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete and Continuous Dynamical Systems  S, 2018, 11 (6) : 12591282. doi: 10.3934/dcdss.2018071 
[16] 
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603619. doi: 10.3934/eect.2019028 
[17] 
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193202. doi: 10.3934/naco.2018011 
[18] 
Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed controlstate constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471491. doi: 10.3934/mcrf.2020007 
[19] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[20] 
Enrique FernándezCara, Juan Límaco, Laurent Prouvée. Optimal control of a twoequation model of radiotherapy. Mathematical Control and Related Fields, 2018, 8 (1) : 117133. doi: 10.3934/mcrf.2018005 
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]