July  2006, 14(3): 549-578. doi: 10.3934/dcds.2006.14.549

Global attractivity, I/O monotone small-gain theorems, and biological delay systems

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States, United States

Received  October 2004 Revised  March 2005 Published  December 2005

This paper further develops a method, originally introduced by Angeli and the second author, for proving global attractivity of steady states in certain classes of dynamical systems. In this approach, one views the given system as a negative feedback loop of a monotone controlled system. An auxiliary discrete system, whose global attractivity implies that of the original system, plays a key role in the theory, which is presented in a general Banach space setting. Applications are given to delay systems, as well as to systems with multiple inputs and outputs, and the question of expressing a given system in the required negative feedback form is addressed.
Citation: G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549
[1]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[2]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i

[3]

Yoshiaki Muroya, Teresa Faria. Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3089-3114. doi: 10.3934/dcdsb.2018302

[4]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control and Related Fields, 2022, 12 (2) : 405-420. doi: 10.3934/mcrf.2021027

[5]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[6]

Yutian Lei. On the integral systems with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

[7]

F. R. Guarguaglini, R. Natalini. Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology. Communications on Pure and Applied Analysis, 2007, 6 (1) : 287-309. doi: 10.3934/cpaa.2007.6.287

[8]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[9]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[10]

Edward J. Allen. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology. Mathematical Biosciences & Engineering, 2014, 11 (3) : 403-425. doi: 10.3934/mbe.2014.11.403

[11]

Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[12]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[13]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[14]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[15]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial and Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[16]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001

[17]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[18]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[19]

Avner Friedman. PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691

[20]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (36)

Other articles
by authors

[Back to Top]