\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles

Abstract Related Papers Cited by
  • For many classes of symplectic manifolds, the Hamiltonian flow of a function with sufficiently large variation must have a fast periodic orbit. This principle is the base of the notion of Hofer-Zehnder capacity and some other symplectic invariants and leads to numerous results concerning existence of periodic orbits of Hamiltonian flows. Along these lines, we show that given a negatively curved manifold $M$, a neigbourhood $U_{R}$ of $M$ in T*M, a sufficiently $C^{1}$-small magnetic field $\sigma$ and a non-trivial free homotopy class of loops $\alpha$, then the magnetic flow of certain Hamiltonians supported in $U_{R}$ with big enough minimum, has a one-periodic orbit in $\alpha$. As a consequence, we obtain estimates for the relative Hofer-Zehnder capacity and the Biran-Polterovich-Salamon capacity of a neighbourhood of $M$.
    Mathematics Subject Classification: Primary: 37J45, 53D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return