
Previous Article
Large entropy implies existence of a maximal entropy measure for interval maps
 DCDS Home
 This Issue

Next Article
Stability for the vertical rotation interval of twist mappings
On conditions that prevent steadystate controllability of certain linear partial differential equations
1.  Laboratoire des systèmes et signaux, Université ParisSud, CNRS, Supélec, 91192, GifsurYvette, France 
2.  Département de Mathématiques, Université ParisSud, Bâtiment 425, 91405, Orsay, France 
3.  Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 53  Edificio U5, 20125  Milano, Italy 
[1] 
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143150. doi: 10.3934/proc.2009.2009.143 
[2] 
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems  S, 2020, 13 (3) : 709722. doi: 10.3934/dcdss.2020039 
[3] 
Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535559. doi: 10.3934/eect.2020023 
[4] 
Umberto Biccari, Mahamadi Warma, Enrique Zuazua. Controllability of the onedimensional fractional heat equation under positivity constraints. Communications on Pure and Applied Analysis, 2020, 19 (4) : 19491978. doi: 10.3934/cpaa.2020086 
[5] 
Víctor HernándezSantamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete and Continuous Dynamical Systems  B, 2020, 25 (1) : 161190. doi: 10.3934/dcdsb.2019177 
[6] 
Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems  S, 2022, 15 (6) : 13771401. doi: 10.3934/dcdss.2022011 
[7] 
Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems  S, 2022, 15 (6) : 15251546. doi: 10.3934/dcdss.2022087 
[8] 
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449461. doi: 10.3934/eect.2016013 
[9] 
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete and Continuous Dynamical Systems  S, 2020, 13 (3) : 755768. doi: 10.3934/dcdss.2020042 
[10] 
Chihiro Matsuoka, Koichi Hiraide. Special functions created by BorelLaplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 111. doi: 10.3934/era.2011.18.1 
[11] 
William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309329. doi: 10.3934/steme.2021020 
[12] 
Umberto Biccari. Boundary controllability for a onedimensional heat equation with a singular inversesquare potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191219. doi: 10.3934/mcrf.2019011 
[13] 
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a halfaxis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211236. doi: 10.3934/mcrf.2020034 
[14] 
Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. StackelbergNash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021044 
[15] 
Micol Amar, Roberto Gianni. LaplaceBeltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems  B, 2018, 23 (4) : 17391756. doi: 10.3934/dcdsb.2018078 
[16] 
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657699. doi: 10.3934/cpaa.2016.15.657 
[17] 
Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the KontorovichLebedev transform. Communications on Pure and Applied Analysis, 2011, 10 (2) : 745760. doi: 10.3934/cpaa.2011.10.745 
[18] 
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721734. doi: 10.3934/ipi.2010.4.721 
[19] 
Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems  B, 2017, 22 (4) : 14251434. doi: 10.3934/dcdsb.2017068 
[20] 
Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 935964. doi: 10.3934/mcrf.2018041 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]