Advanced Search
Article Contents
Article Contents

Remarks on singular critical growth elliptic equations

Abstract Related Papers Cited by
  • Let $\Omega$ be a bounded domain in $\mathbb R^N$$(N\geq 4)$ with smooth boundary $\partial \Omega$ and the origin $0 \in \overline{\Omega}$, $\mu<0$, 2*=2N/(N-2). We obtain existence results of positive and sign-changing solutions to Dirichlet problem $-\Delta u=\mu\frac{ u}{|x|^2}$+|u|2*-2u+$\lambda u \ \text{on}\ \Omega,\ u=0 \ \text{on}\ \partial\Omega$, which also gives a positive answer to the open problem proposed by A. Ferrero and F. Gazzola in [Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations, 177(2001), 494-522].
    Mathematics Subject Classification: Primary: 35J60, 35J25; Secondary: 35J33.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint