January  2006, 14(1): 75-92. doi: 10.3934/dcds.2006.14.75

Asymptotic properties and classification of bistable fronts with Lipschitz level sets

1. 

LATP (UMR CNRS 6632), Faculté des Sciences et Techniques, Université Aix-Marseille III, F-13397 Marseille Cedex 20

2. 

CERMICS-ENPC, 6-8 avenue B. Pascal, Cité Descartes, F-77455 Marne-La-Vallée Cedex 2

3. 

Laboratoire M.I.P. (UMR CNRS 5640) and Institut Universitaire de France, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France

Received  October 2004 Revised  March 2005 Published  October 2005

In this paper we study solutions to reaction-diffusion equations in the bistable case, defined on the whole space in dimension $N$. The existence of solutions with cylindric symmetry is already known. Here we prove the uniqueness of these cylindric solutions whose level sets are curved Lipschitz graphs. Using a centre manifold-like argument, we also give the precise asymptotics of these level sets at infinity. In dimension 2, we classify all solutions under weak conditions at infinity. Finally, we also provide an alternative proof of the existence of these solutions in dimension 2, based on a continuation argument.
Citation: François Hamel, Régis Monneau, Jean-Michel Roquejoffre. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 75-92. doi: 10.3934/dcds.2006.14.75
[1]

Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362

[2]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[3]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[4]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[5]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[6]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[7]

François Hamel, Régis Monneau, Jean-Michel Roquejoffre. Existence and qualitative properties of multidimensional conical bistable fronts. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 1069-1096. doi: 10.3934/dcds.2005.13.1069

[8]

Zhi-Cheng Wang. Traveling curved fronts in monotone bistable systems. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2339-2374. doi: 10.3934/dcds.2012.32.2339

[9]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[10]

Alessandro Audrito. Bistable reaction equations with doubly nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 2977-3015. doi: 10.3934/dcds.2019124

[11]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[12]

Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477

[13]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[14]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[15]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[16]

Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467

[17]

François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101

[18]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, 2021, 29 (3) : 2269-2291. doi: 10.3934/era.2020116

[19]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[20]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (4)

[Back to Top]